Design and Implementation of a Media Entertainment System Running on a Carputer

By Jamal Mohamed Kiyasudeen

A Thesis presented to University of Applied Sciences – Offenburg, Germany. In fulfilment of the thesis requirement for the degree International Master of Science (M.Sc.,) in "Communication and Media Engineering".

University of Applied Sciences – Offenburg, Germany.

Design and Implementation of a Media Entertainment System Running on a Carputer

By Jamal Mohamed Kiyasudeen

Chairperson of the Supervisory Committee: Prof. Dr. Daniel Fischer. Prof. Dr. Erhardt. University of Applied Sciences – Offenburg, Germany.

Declaration

I hereby declare that I am the sole author of this thesis. I authorise the University of Applied Sciences-Offenburg to lend this thesis to other institution or individuals for the purpose of scholarly research.

Signature.

I further authorise the University of Applied Sciences-Offenburg to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Signature.

Acknowledgements

I have been fortunate enough to have all the supports that I needed to finish my master thesis even though crossing so many hurdles.

First and foremost, I would like to acknowledge the real debt of gratitude that I owe to my Almighty and my Parents for always being there for me. Thanks to my Almighty and my Dad & Mom.

My heartful thanks goes to Prof. Dr. –Ing. Daniel Fischer and Prof. Dr. Erhardt from University of Applied Sciences, Offenburg for supervising my Thesis work also to Mr. Michael Kiebel for initiating this Thesis work.

I express my thanks to my colleague and friend Srijay in Hewlett-Packard, Germany for his valuable ideas to make my thesis successful.

Thank you Kalai for being my friend and having confidence in me throughout my thesis. I am also thankful for your moral support.

Also special thanks go to University of Applied Sciences-Offenburg for the wonderful moments during my studies there and to all my colleagues in Communication and Media Engineering for their unforgettable friendship.

Last but not the least, I would like to thank the Federal Republic of Germany for offering me an opportunity to do my master studies in Germany and learn a lot about the culture and acquire knowledge from this country. Also I would like to thank the Government of Tamilnadu, INDIA for offering me an Engineering education which induces me to do my International studies abroad.

Abstract

For the automobile Industry, due to the demand of the comfort customers requirements the industry started introducing the entertainment systems like DVD Player, GPS Navigation systems, etc., apart from Radio and Music systems which are very traditional from the past.

Now a days the customers are using the GPS Navigation along with all type of media entertainment in comfort cars. However the price of the whole system is bit expensive such that all kinds of the customers can't afford.

The customers who are using expensive cars can only use these kinds of systems which are coming along with luxurious cars as an accessory.

This Master Thesis describes the "Design and Implementation of a Media Entertainment System Running on a Carputer" which plays a major role for all kinds of customers to enjoy the DVD Player, Music Player, Video Player, Radio, TV and GPS Navigation system as a single device in Car. Moreover the cost of the product is not so expensive like the present available systems in the market. The motto behind this thesis is to bring all kinds of entertainment systems along with GPS Navigation to all kinds of automobile customers.

Table of Contents

Acknowledgements	4
Abstract	5
Table of Contents	6
List of Figures & Tables	10
Chapter 1: Overview of Kiebel Computerdienste	12
1.1 Introduction	12
1.2 History	12
1.3 Hardware Development and Reselling	12
1.4 Software Development	13
1.5 Current Focus	14
Chapter 2: Master Thesis Requirements	15
2.1 Overview	15
2.2 Suggested Solution	16
Chapter 3: Carputer	17
3.1 Overview	17
3.2 Technology	18
3.2.1 Power Supply	18
3.2.2 Display Unit	19
3.2.3 Computer Unit	20
3.2.4 Remote Control	20
3.3 Advantages	22
Chapter 4: Current Technology	23
4.1 Overview	23
4.2 Xenarc Technologies	23
4.2.1 Mini P3 Aluminium Car PC	24
4.3 Peter Bridger a one man company	25
4.3.1 Experience	26
4.3.2 Realisation	28
4.4 Overall Impression	32

Chapter 5: Software Development Process	33
5.1 Introduction	33
5.2 Software Engineering	33
5.2.1 Introduction	33
5.2.2 Software Chronic Crisis Recognition	34
5.2.3 What is a project ?	36
5.2.4 Project Lifecycle	36
5.2.5 Project Methodology	37
5.2.6 Organisation	38
5.3 Processes and meta-processes	38
5.3.1 Capability Maturity Model	39
5.3.2 ISO 9000	39
5.3.3 ISO 15504	40
5.3.4 Six Sigma	40
5.3.5 Agile Software development	41
5.4 Software Life Cycle Models	42
5.4.1 Requirements Engineering	42
5.4.2 Design	43
5.4.3 Programming	43
5.4.4 Integration	43
5.4.5 Delivery	43
5.4.6 Maintenance	43
5.5 Software Quality Characteristics	44
Chapter 6: Software Model and Programming Paradigms	48
6.1 Why Software Model?	48
6.1.1 Top-Down and Bottom-Up Model	48
6.1.2 Prototyping Model	49
6.1.3 Evolutionary Prototyping Model	49
6.1.4 Iterative and Incremental development	49
6.1.5 Waterfall Model	50
6.1.6 Spiral Model	51
6.1.7 Chaos Model	52

6.2 Aspects of programming paradigms	53
6.2.1 Hardware	54
6.2.2 Theories	55
6.2.3 Runtime System	55
6.2.4 Programming Language	55
6.2.5 Design Language	56
6.3 Types of programming paradigms	56
6.3.1 Procedural Programming	57
6.3.2 Structured Programming	57
6.3.3 Imperative programming	57
6.3.4 Declarative programming	58
6.3.5 Functional programming	58
6.3.6 Literate programming	58
6.3.7 Object oriented programming	58
6.3.8 Concurrent programming	59
6.3.9 Component-oriented programming	60
6.4 Project Requirement	60
Chapter 7: Waterfall Model	61
7.1 Introduction	61
7.2 Overview	61
7.3 Waterfall Characteristics	63
7.4 Requirements Analysis	66
7.4.1 Market Research	66
7.4.2 Market Requirements	67
7.4.3 Analysis	67
7.4.4 Rapid Prototype	68
7.4.5 Prototype Description	70
7.4.6 Conclusion	71
7.5 Design	71
7.5.1 Software Architecture	72
7.5.2 Unified Modelling language (UML)	73
7.5.3 Conclusion	76

7.6 Implementation	76
7.6.1 Programming Process	76
7.6.2 Integration Process	77
7.7 Testing	78
7.7.1 Software Testing	78
7.7.2 Alpha Testing	79
7.7.3 Beta Testing	79
7.7.4 Gamma Testing	79
7.7.5 Software Testing Activities	80
7.7.6 Stress Testing	80
7.7.7 Test Automation	83
7.8 Delivery and Maintenance Process	85
Chapter 8: Conclusion	87
Appendix A Delphi Source code of Kiebel Car Media	88
Appendix B Delphi Source code of Kiebel DVD Player.	89
Appendix C Test Complete Delphi Test Script	90
References	91

List of Figures & Tables

Figure 1 : Kiebel Computerdienste Web profile	13
Figure 2: Carputer Setup	17
Figure 3: Carputer Setup Front view	18
Figure 4: Power Supply (12V AC Converter)	18
Figure 5: "7 inch" LCD Display Unit	19
Figure 6: PC Unit	18
Figure 7: Creative Infra PC-DVD Remote Control	20
Figure 8: Infra PC-DVD Remote Receiver Unit.	22
Figure 9: "7 inch" LCD Touch Screen.	23
Figure 10: Mini P3 Aluminium Car PC	24
Figure 11: Mini P3 Aluminium Car PC	25
Figure 12: Motherboard in dashboard case.	25
Figure 13: "7 inch" Touch Screen Display near the Gear Box	26
Figure 14: Full view of the LCD monitor located near the gearbox	26
Figure 15: GPS software Route 66.	27
Figure 16: GPS software Infomap	27
Figure 17: GPS software Auto Route.	28
Figure 18: Approximate relative costs of the phases of the software lifecycle	44
Figure 19: Waterfall Model	50
Figure 20: Spiral Model	52
Figure 21: Aspects of Programming Paradigm	53
Figure 22: Waterfall Lifecycle	62
Figure 23: Programming Process Loop	65
Figure 24: Requirement Analysis	66
Figure 25: Rapid Prototype	68
Figure 26: Prototype of the Kiebel Car Media Configuration Window	68
Figure 27: Inifile of Kiebel Car Media	69
Figure 28: Prototype of Kiebel Car Media Main Window	69
Figure 29: Software Prototype of Kiebel DVD Player	69
Figure 30: Design Structure	71

Figure 31: Software Architecture Model	73
Figure 32 UML model of Kiebel Car Media	74
Figure 33 UML model of Kiebel DVD Player	75
Figure 34: Programming Process	76
Figure 35: Integration Process	77
Figure 36: Lifecycle of Install shield software	78
Figure 37: Test log from Test Complete 3.0	84
Figure 38: Delivery and Maintenance Process-1	85
Figure 39: Delivery and Maintenance Process-2	85
Figure 40: Delivery and Maintenance Process-3	86
Table 1: Software Quality Characteristics	47
Table 2: Waterfall Characteristics	63
Table 3: Test cases of Kiebel Car Media	81
Table 4: Test cases of Kiebel DVD Player	82

Chapter 1

Overview of Kiebel Computerdienste

1.1 Introduction

Kiebel Computerdienste is a small company located in south of Germany in a city called *Willstätt* mainly deals with computer hardware assembling and reselling business. Due to the enormous demands for the software projects, the company has recently launched its potential in the field of software developments to compete with the market challenges of day today software technologies.

1.2 History

The company started as a one man company about 10 years ago dealing with PC assembling only. Later the company has increased their capital to resell all kinds of computer hardware's, right now raised their flag as "*Power Seller*" in eBay. Also the company hold online shops to develop their business. The company has more than 1000 customers till today. Recently it focussed its interest in developing palms for Customer Maintenance System with a chip card reader facility; this project's success motivates the company to develop all kinds of Software Application projects also.

1.3 Hardware Development and Reselling

Hardware development includes assembling Desktop PCs and Mini PCs depends upon the customer's configuration requirements. The latest small PC is about 12 inches height called "Shuttle X" made the customer's interest towards small PCs.

The company holds the dealership for all kinds of "BENQ" products. Reselling of Laptops, Scanners, Printers, Beamers, LCD monitors, Fax machines, Audio & Video systems, Digital Cameras, and all its accessories are the backbone of the company's business.

Its main focus is to produce small PCs with updated configuration at an affordable cost. Now the company deals products like PCs with integrated TV and media entertainment systems also. The company deals both wholesale and retail sale for all the above mentioned products.

All the products marketing are done mainly via online shop and also through the online store eBay. The below figure shows the website of the company and how it deals with the product sales through online shops.

Figure 1 : Kiebel Computerdienste Web profile

1.4 Software Development

The hardware demands from the customers forced the company to turn their direction towards software developments also. The first software project is the *Palm with chip card reader facility for Customer Maintenance System* used in various clubs and discos to identify their customers with the help of photograph.

This system has a server contains all the information about the customers including their photographs. When the palm reads the chip card, the palm will communicate with the server to identify their customer. The whole project has been done in Delphi 7 and SQL server.

Apart from Application projects the company deals web related projects also for online shops using PHP scripts and HTML.

1.5 Current Focus

Later on developing mini PCs and tablet PCs raised "Why not a computer in Car?" which invent a very small computer inside the dashboard of a car like present music systems available. The main idea is to fix the computer unit and the 7 inch monitor such that it sits perfectly in the slot provided for the music system in car dashboard. The idea of implementing an integrated TV and Radio systems with an antenna is an added advantage of this product.

The ideas about the user interface and the entertainment systems to be included in the software for the above mentioned unit evolved this Master Thesis. The detailed overview of this Master Thesis will be discussed in chapter 2.

The company will launch the product under the name "CARPUTER" since the car dashboard has a computer unit inside.

Chapter 2

Master Thesis Requirements

2.1 Overview

As Automobile industry is the growing business in Germany, automobile manufacturers are always trying to improve the quality of the product by improving the testing procedures of almost every part of the automobile. The manufacturers also introduce attractive entertainment system and luxurious accessories in the present cars before delivering it to the customers. The motto behind the process is to keep hold the customers firm and tight with the company product.

Only luxurious category cars can able to avail most of the privileges. For example BMW 7 series cars have a good entertainment system with a 7 inch display in dashboard along with GPS Navigation system. Normal small cars should use GPS Navigation system as a separate device in car, same holds well for the entertainment system also. Of Course the separate media entertainment system and separate GPS navigation systems are very expensive that a normal small car customer can not afford it.

The company "Kiebel Computerdienste" has planned to overcome the problem such that all kinds of automobile customers should be able to experience the modern entertainment system along with GPS navigation system at an affordable price.

This plan induces a cheaper media entertainment system along with GPS Navigation that could be considered as the hardware requirements of the Master Thesis. The total hardware requirements of the project had been undertaken by the company.

The requirement of the Master Thesis is to develop a user-friendly software for the above mentioned product using Delphi 7.

The software includes user interface to invoke GPS Navigation, DVD Player, Music Player and Video Player. The Music Player and Video Player accommodate with Windows XP so that the company doesn't need to pay for the license. To use the DVD Player the company was in a position to pay license for the DVD Player Software; this is a problem regarding cost measure.

Also the company has planned to implement a cheaper remote control which plays as a remote mouse so that LCD touch screen can be replaced with ordinary LCD screen, this step is cost effective to reduce the price of the product.

2.2 Suggested Solution

The suggested solution to avoid paying license for the DVD Player Software was to develop an own DVD Player Software using Delphi 7.0.

With this plan we can design and customize the DVD Player software depends on our 7 inch screen display by avoiding unwanted options.

By using customised DVD Player software the customers can easily play around with the mouse since it will be designed keeping our hardware's in mind.

Suggesting the solution raised the target market, which makes the company to focus on "PORSCHE", thereby the company has planned to include the Porsche logo inside the user interface of the project since it has been planned as the target market.

